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When graviton loops are taken into account, the background metric obtained as a solution to the one-loop
corrected Einstein equations turns out to be gauge-fixing dependent. Therefore it is of no physical relevance.
Instead we consider a physical observable, namely, the trajectory of a test particle in the presence of gravitons.
We derive a quantum corrected geodesic equation that includes backreaction effects and is explicitly indepen-
dent of any gauge-fixing parameter.@S0556-2821~97!02024-9#

PACS number~s!: 04.60.2m, 11.15.Kc

I. INTRODUCTION

In quantum field theory there are many physical situations
where one is interested in the dynamical evolution of fields
rather than inS-matrix elements. The effective action~EA! is
a useful tool to obtain the equations that govern such dynam-
ics including the backreaction effects due to quantum fluc-
tuations. In the context of gravity, the equations that give the
dynamics of the spacetime metric including quantum effects
are the so-called semiclassical Einstein equations~SEE! @1#.
These have been widely used to analyze different physical
situations such as gravitational collapse and black hole
evaporation.

Since DeWitt’s pioneering work@2#, it is known that, at
the one-loop level, the quantization of the fluctuations of the
gravitational field around a given background is equally as
important as the quantization of the matter fields. Therefore,
the graviton field contributes to the SEE along with all the
other matter fields. In order to avoid the technical complica-
tions that take place when gravitons are quantized, their con-
tribution to the SEE is usually neglected. It is a common
belief that, once the technical details are solved, one can
compute their contribution to the energy momentum tensor
and write the full one loop SEE. The solution to these equa-
tions would be the quantum corrected metric of spacetime.

In the present paper we will argue that, when gravitons
are taken into account, the solution to the SEE is not physi-
cal. The reason is simple: any classical device used to mea-
sure the spacetime geometry will also feel the graviton fluc-
tuations. As the coupling between the classical device and
the metric is nonlinear, the device will not measure the
‘‘background geometry’’~i.e., the geometry that solves the
SEE!. As a particular example we will show that a classical
particle does not follow a geodesic of the background metric.
Instead its motion is determined by a quantum corrected geo-
desic equation that takes into account its coupling to the
gravitons.

This analysis also leads us to find a solution to the so-
called gauge-fixing problem. A ‘‘technical’’ obstacle to think
of a solution to the SEE as the metric of spacetime is that in
general it depends on the gauge fixing of the gravitons. As an
example we can mention calculations of compactification ra-
dii in Kaluza-Klein theories@3#. The standard approach to
tackle this problem is to consider the Vilkovisky-DeWitt ef-
fective action@4#, which is specifically built to give a re-
parametrization, gauge-fixing independent action. However,
this action suffers from another type of arbitrariness, namely
the dependence on the supermetric in the space of fields that
is introduced in its definition@5–7#. The aforementioned ob-
stacle is not ‘‘technical’’ but physical: since the classical
device couples to gravitons, the solution to the SEE will not,
in general, have a clear physical interpretation. We will dem-
onstrate explicitly that while the solution to the SEE is
gauge-fixing dependent, the quantum corrected geodesic
equation~that takes into account such coupling! does not
depend on the gauge fixing. In summary, the solution of the
backreaction problem consists of two steps: to solve the
semiclassical Einstein equations and to extract the physical
quantities from the solution.

In order to illustrate these facts we will consider the cal-
culation of the leading quantum corrections to the Newtonian
potential. As has been pointed out in@8–10#, when general
relativity is looked upon as an effective field theory, low-
energy quantum effects can be studied without the knowl-
edge of the~unknown! high-energy physics. The leading
long distance quantum corrections to the gravitational inter-
actions are due to massless particles and only involve their
coupling at energies low compared to the Planck mass. Us-
ing this idea, many authors have calculated the leading quan-
tum corrections to the Newtonian potential computing differ-
ent sets of Feynman diagrams@8,9,11,12#. Instead of
evaluating diagrams andS-matrix elements, we are here con-
cerned with a covariant calculation based on EA and effec-
tive field equations. This covariant approach is more ad-
equate to study problems in which one considers fluctuations
around nonflat backgrounds. We shall first compute the SEE
for the backreaction problem starting from the standard EA
and show how they depend on the gauge fixing. Using a
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corrected geodesic equation we will deduce a physical quan-
tum corrected Newtonian potential, which does not depend
on the gauge-fixing parameters.

II. THE ONE LOOP EFFECTIVE ACTION FOR
GRAVITY 1MASS: DIVERGENCES

The Einstein-Hilbert action for pure gravity is1

SG5
2

k2E d4xA2 ḡ R̄, ~1!

where R̄ is the curvature scalar,ḡmn is the metric tensor,
ḡ5detḡmn , and k2532pG, with G being Newton’s con-
stant. In the background field method we consider fluctua-
tions of the gravitational field around a background metric,
ḡmn5gmn1ksmn . Expanding the action up to quadratic or-
der in the graviton fluctuationssmn , the gravitational action
reads

SG5E d4xA2gF 2

k2
R1

1

k
smn~gmnR22Rmn!

1H 1

2
¹asmn¹asmn2

1

2
¹as¹as1¹as¹bsab

2¹asmb¹bsma1RS 1

4
s22

1

2
smnsmnD

1Rmn~2sm
l snl2ssmn!J 1•••G , ~2!

where s5gmnsmn , and the ellipsis denotes higher order
terms in the fluctuations. In order to fix the gauge one
chooses a gauge-fixing functionxm@g,s#, and a gauge-fixing
action

Sgf@g,s#52
1

2E d4xA2gxmgmnxn. ~3!

The one loop effective action for the background metric is
obtained from integrating out quantum fluctuations and im-
plies the evaluation of functional determinants for gravitons
and ghosts in the presence of the background fields. It reads

Seff5SG1
i

2
Tr ln F d2SG@g#

dgabggd
2

dxm

dgab
gmn

dxn

dggdG
2 iTr ln F22gsa¹b

dxm

dgabG . ~4!

The first term is the classical action, the second one stems
from graviton fluctuations and the last one is the ghosts con-
tribution. These last two terms are quantum corrections lin-
ear in\.

To proceed further one has to choose a particular gauge-
fixing function. The simplest choices of gauge are those
called ‘‘minimal’’ gauges, which lead to the evaluation of
functional traces for gravitons and ghosts of second-order
differential operators of the formFAB(¹)5ĈAB gmn¹m¹n

1Q̂AB , where ĈAB is an invertible matrix andQ̂AB is an
arbitrary matrix. For these cases the one loop EA can be
expanded in powers of the background dimensionality using
the well-known Schwinger-DeWitt expansion, which is local
in the background fields~see Appendix A!. For the other
‘‘nonminimal’’ gauges, in@13# it has been developed a re-
duction method that generalizes the former technique~see
Appendix B!.

In the following we shall mainly consider the so-calledl
family, which is a one parameter family of gauge-fixing
functions

xm~l!5
1

A11l
Fgmg¹ssgs2

1

2
ggs¹msgsG . ~5!

For gauge-fixing functions linear in the metric fluctuations,
ghosts decouple from the fluctuationssmn and only couple to
the background fields. The one loop EA takes the form

Seff5SG1
i

2
Tr ln Fab,mn~¹!2 iTr ln ~hdn

m1Rn
m!, ~6!

where the second term involves graviton diagrams and the
third one involves ghost diagrams. The second-order differ-
ential operator is

Fab,mn~¹!5A2gCab,lsH hd~l
m ds)

n 2
2l

11l
d~l

~m¹s)¹
n)

1
l

11l
gmn¹~l¹s)1Pls

mnJ , ~7!

where

Cab,ls5
1

4
~glagsb1glbgsa2glsgab!,

Pls
mn52Rl • s •

~m n!12d~l
~mRs)

n) 2gmnRls2glsRmn2Rd~l
m ds)

n

1
1

2
gmnglsR. ~8!

Here the parentheses denote symmetrization with a 1/2 fac-
tor. We see thatF does not have the form of a minimal
operator due to the presence of the second and third terms.
For the special casel50, which is known as DeWitt gauge,
we have the simplest case of a minimal operator.

Next we couple gravity to a heavy particle~a classical
source! of massM , which adds a new term to the action

SM52ME A2 ḡmndxmdxn. ~9!

This coupling introduces an additional contribution to the
EA. Expanding the action for the particle up to quadratic
order in gravitons, we have

1Our metric has signature (2111) and the curvature tensor is

defined asR̄
•nab
m 5]aGnb

m 2•••, R̄ab5R̄
• amb

m and R̄5 ḡabR̄ab .
We use units\5c51.
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SM52ME dtF12
k

2
smnẋmẋn2

k2

8
smnsrsẋmẋnẋrẋs1••• G ,

~10!

where the overdots represent derivatives with respect to the
proper timet, defined asdt252gmndxmdxn, and the ellip-
sis are higher order terms in the gravitons fluctuations. Intro-
ducing an identity as 15*d4yA2gd4@y2x(t)#, the action
can be rewritten in the following way:

SM52ME dt1
k

2E d4yA2gsmn~y!Tmn~y!

1E d4yA2gsmn~y!srs~y!M̃mnrs~y!1•••,

~11!

where

Tmn~y!5ME dt ẋmẋnd4
„y2x~t!…, ~12!

and

M̃mnrs~y!5
Mk2

8 E dtd4
„y2x~t!…ẋmẋnẋrẋs. ~13!

The quadratic terms in Eq.~11! introduce a new contribution
to the differential operatorF(¹), which finally takes the
form

Fab,mn~¹!5A2gCab,lsH hd~l
m ds)

n 2
2l

11l
d~l

~m¹s)¹
n)

1
l

11l
gmn¹~l¹s)1Pls

mn1Mls
mnJ , ~14!

with

Mls
mn~y!5~C21!mnabM̃abls~y!

5
Mk2

8 E dtd4
„y2x~t!…

3@gmnẋlẋs12ẋmẋnẋlẋs#. ~15!

As is well-known, the EA has divergences. For example,
for the pure gravitational part, the one loop divergences in
the DeWitt (l50) gauge have been calculated long ago us-
ing dimensional regularization and turn out to be local terms
quadratic in the curvature tensors@14#. They read2

DSG
div~l50!5

2

~42d!96p2

3E d4xA2gF53

15
~RmnrsRmnrs

24RmnRmn1R2!1
21

10
RmnRmn1

1

20
R2G , ~16!

where the first term in parentheses is the Gauss-Bonnet term,
a topological invariant ind54 spacetime dimensions. In Ap-
pendix A we show how to evaluate the divergence stemming
from the massive part for the minimal gaugel50. It reads

DSM
div~l50!5

2

~42d!64p2E d4xA2gFMmnrsMmnrs

12MmnrsS Prsmn1
1

6
Rdr~mdsn)D G . ~17!

Now we have to calculate the EA for any member of the
l family gauge-fixing functions other than thel50 one. The
calculation is cumbersome and we leave it for Appendix B.
Here we just state the main result that shall concern us~see
below!, namely, the divergence of the one loop EA that is

linear in the extremalEmn52(2/k2)(Rmn2 1
2 Rgmn)1 1

2 Tmn,

DSdiv~l!5DSdiv~l50!2
l

42d

k2

24p2

3E d4xA2gF25RmnEmn1
5

2
RgmnEmnG ,

~18!

where DSdiv(l50)5DSG
div(l50)1DSM

div(l50) is the di-
vergence for the DeWitt gauge, that was already calculated.
Note that the~ultraviolet! divergences of the EA take the
form of local tensors expressed in terms of curvatures and
the energy-momentum tensor for the source particle.

III. LONG DISTANCE LEADING QUANTUM
CORRECTIONS: THE LOG TERMS

The theory we are considering is not renormalizable,
since the divergences cannot be absorbed into the parameters
introduced thus far. Additional divergent counterterms~and
some accompanying finite parts! quadratic in the curvature
tensors must be added to the classical actionSG1SM . How-
ever, the nonrenormalizability of the theory is not an impedi-
ment for making well defined quantum predictions at low
energies/large distances. As we have already remarked, the
idea is to treat gravity as an effective field theory, and per-
form a systematic expansion in the energy. In this approach,
the unknown parameters introduced with the various coun-
terterms have to be determined by comparison with experi-
ment, which then allows to make predictions to a given order
in an energy expansion. However, the low-energy physics is
not contained in these parameters, but rather in a different
class of quantum corrections. The leading long distance cor-

2To be precise, the EA contains two additional divergences, one
proportional toA2g and another proportional toA2gR. As these
can be absorbed into a redefinition of the cosmological constant and
the Newton constant, we shall not consider them in what follows.
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rections stem from the nonlocal, nonanalytic terms in the one
loop effective action. These nonlocal terms have been com-
puted in@15,16# expanding the EA in powers of the curva-
tures, using a resummation procedure of the Schwinger-
DeWitt expansion for the action. Keeping up to quadratic
order in the curvature tensors, the general form of such terms
is RG(h)R, where R denotes any of the tensors
R,Rmn ,Mmnrs , andG(h) is a nonlocal form factor. For the
theory we are considering,G(h) is proportional to ln(2h),
and these logarithmic terms are the relevant ones in the low-
energy limit. The proportionality constants accompanying
the ln(2h) can be read off from the~local! divergences in
Eqs. ~16!, ~17!, ~18! in a manner outlined in@9,15#. One
extracts the coefficient of the logarithmic correction from the
divergence in the following way:

a

42dE d4xA2g~••• !→2
a

2E d4xA2g~••• !ln~2h !.

~19!

Using this result, the nonlocal part of the EA proportional to
the logarithm takes the form DS5DSG

nl(l50)
1DSM

nl (l50)1DSnl(lÞ0), with

DSG
nl~l50!52

1

96p2E d4xA2gF21

10
Rmnln~2h !Rmn

1
1

20
R ln~2h !RG , ~20!

DSM
nl ~l50!52

1

64p2E d4xA2gFMmnrsln~2h !M rsmn

12Mmnrsln~2h !S Prsmn1
1

6
Rdr~mdsn)D G ,

~21!

DSnl~lÞ0!5E d4xA2g@a~l!Rmnln~2h !Emn

1b~l!Rgmnln~2h !Emn], ~22!

wherea(l)525lk2/48p2 andb(l)55lk2/96p2.
We choose a classical static point mass located at the

origin. Hence ẋm5(1,0,0,0), Tmn(x)5Md0
md0

nd3(xW ), and

Tm
m52Md3(xW ). As we will calculate long distance correc-

tions to gravitational interactions~in particular to the New-
tonian potential!, we can assume the source is a ‘‘point
mass,’’ although its size should be much larger than its
Schwarzschild radius and the Planck length in order to jus-
tify the weak field approximation to be done in what follows.
With this choice for the source, the different tensors appear-
ing in the massive nonlocal part of the EA take the form

Mmnls~y!5
Mk2

8
d3~yW ! @gmn12d0

md0
n# d0

ld0
s ,

MmnrsRdr~mdsn)5
Mk2

8
Rd3~yW !,

~23!

MmnrsPrsmn5
Mk2

8
d3~yW !@gmnP00mn12P0000#

52
Mk2

8
Rd3~yW !.

With the help of these expressions, the contribution of the
source to the nonlocal part of the EA is

DSM
nl ~l50!5

5Mk2

1536p2E d4xA2gR ln~2¹2!d3~xW !,

~24!

where we have used the fact that the massM is static to
replaceh→¹2. We have omitted the term that is quadratic
in M because it will be irrelevant in the long distance limit.

Adding the classical and quantum contributions of the EA
and taking functional derivations with respect to the metric,
it is possible to compute the SEE including backreaction of
gravitons. As we are neglectingO(R3) terms in the effective
action, it makes no sense to retainO(R2) terms in the equa-
tions of motion. Therefore, when doing the variation of the
action with respect to the metric, it is not necessary to take
into account thegmn dependence of the logarithmic form
factors. Moreover it is possible to commute the covariant
derivatives acting on a curvature, i.e.,
¹m¹nR5¹n¹mR1O(R2). However, if one uses the stan-
dard in-out EA calculated thus far, the equations of motion
turn out to be neither real nor causal. In order to get the
equations for the mean values one can take any of the fol-
lowing routes: to calculate the in-in EA~which involves a
doubling of the number of fields! and derive from it the
appropiate field equations@17#, to take twice the real and
causal part of the in-out equations, or to calculate the Euclid-
ean EA and replace in the equations of motion the Euclidean
propagators by the retarded ones@18#. Using any of these
alternatives, the mean value equations, up to linear order in
curvatures, read

1

8pGS Rmn2
1

2
RgmnD5Tmn1^Tmn&l50

G 1^Tmn&l50
M

1^Tmn&a~l!1^Tmn&b~l! , ~25!

where

7782 56DIEGO A. R. DALVIT AND FRANCISCO D. MAZZITELLI



^Tmn&l50
G 52

1

96p2F21

10
ln~2¹2!Hmn

~2!1
1

20
ln~2¹2!Hmn

~1!G ,
^Tmn&l50

M 5
5Mk2

768p2
~¹m¹n2gmn¹2!ln~2¹2!d3~xW !,

^Tmn&a~l!5a~l!F2
2

k2
ln~2¹2!Hmn

~2!1
1

k2
ln~2¹2!Hmn

~1!

2
1

2
¹2ln~2¹2!TmnG ,

^Tmn&b~l!5b~l!F 2

k2
ln~2¹2!Hmn

~1!1¹m¹nln~2¹2!Ta
a

2gmn¹2ln~2¹2!Ta
aG , ~26!

where we have introduced the tensors
Hmn

(1)54¹m¹nR24gmn¹2R and Hmn
(2)52¹m¹nR2gmn¹2R

22¹2Rmn . The nonlocal operator ln(2¹2) acts on thed
function as3 ln(2¹2)d3(xW)521/2pr 3 @18#.

IV. QUANTUM CORRECTIONS
TO THE CLASSICAL METRIC

In order to solve the effective Einstein equations for the
background metric we shall make perturbations around flat
spacetime,gmn5hmn1hmn with hmn5diag(2111). We

choose the harmonic gauge (hmn2 1
2 hhmn) ;n50 for the

background perturbation metric. It is worth mentioning that
this choice is completely independent of the gauge-fixing
problem for the quantum fluctuations. In this gauge, the

Ricci tensor is Rmn52 1
2 ¹2hmn and the Ricci scalar

R52 1
2 ¹2h, with h5hmnhmn . Indeces are lowered and

raised with the flat metric. The equations of motion take the
form

¹2 h̄mn5216pG@Tmn1^Tmn&l50
G 1^Tmn&l50

M 1^Tmn&a~l!

1^Tmn&b~l!#, ~27!

where h̄mn5hmn2 1
2 hhmn . The terms in the right-hand side

~RHS! are those appearing in Eq.~26! evaluated in the weak
field approximation. In this approximation, the Newtonian
potential is related to the 00 component of the perturbation

metric asV(r )52 1
2 h00. In order to findh00 we solve Eq.

~27! for h̄00 and the trace of that equation forh. We find a
perturbative solution to these equations around the classical
solutions. This perturbative approach is the reason for having
omitted terms in the EA that are proportional to the square of
the extremalEmn. These contribute to the RHS of Eq.~27!
with terms proportional to the classical equations, and there-

fore vanish identically when the equations are solved pertur-
batively. We writeh̄005 h̄00

(0)1 h̄00
(1) , whereh̄00

(0)54GM/r is

the classical contribution, andh̄00
(1) is the quantum correc-

tion. We get

h̄00
~1!52

2

15p

G2M

r 3
1

5

3p

G2M

r 3
14a~l!

GM

r 3
18b~l!

GM

r 3
,

~28!

where the first and second terms come from the pure gravi-
tational and massive part of the EA~for the DeWitt l50
gauge! and the last two terms correspond to other gauges of
the l family. The equation for the trace is

¹2h516pG@Tm
m1^Tm

m&l50
G 1^Tm

m&l50
M 1^Tm

m&a~l!

1^Tm
m&b~l!#, ~29!

whose perturbative solutionh5h(0)1h(1) leads to a classical
term h(0)54GM/r and a quantum correction

h~1!52
18

3p

G2M

r 3
1

5

p

G2M

r 3
14a~l!

GM

r 3
124b~l!

GM

r 3
.

~30!

The origin of each term is the same as previously discussed.
Therefore the 00 component of the perturbationhmn reads

h005 h̄002
1

2
h5

2GM

r F11
43G

30pr 2
2

5G

12pr 2

1
a~l!22b~l!

r 2 G . ~31!

The first term is due to the presence of the classical massM
~for simplicity we consider only the Newtonian limit, that is,
we do not include classical corrections from general relativ-
ity!. The last four terms are quantum corrections. The second
one stems from pure gravitational contributions~vacuum po-
larization! while the remaining ones arise from the coupling
of the massM to gravitons. The Newtonian potential follows

through the identityV(r )52 1
2 h00. We stress again that the

nonlocal logarithmic corrections to the effective action give
the leading quantum corrections in the long distance limit,
that are proportional tor 23. Had we considered additional
terms proportional toR2 in the effective action, we would
have obtained additional corrections to the classical metric
that vanish exponentially asr→`.

From Eq.~31! it is then clear that the metric that solves
the backreaction equations for the one loop quantized gravity
depends on which particular function one chooses to fix the
gauge. It is for this reason that the classical geodesic equa-
tion for such metric cannot be physical.

V. QUANTUM CORRECTED GEODESIC EQUATION

Let us consider a classical test particle of massm in the
presence of the quantized gravitational fieldḡmn . A physical
observable should be the motion of this particle. We consider
that the mass of this particle is much smaller thanM , which

3This expression can also be obtained by means of the Fourier

transform*@d3q/(2p)3#e2 iqW •rWlnq2521/2pr 3.
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allows us to neglect all contributions of the test particle to
the solution Eq.~31! of the one loop corrected equation.
Now comes the key ingredient: in order to determine how
this test particle moves, one also has to take into account the

fact that it couples to the quantum metricḡmn through the

term 2m*A2 ḡmn(z)dzmdzn, wherezm denotes the path of
the test particle. Therefore there will be an extra contribution
to the one loop EA due to this coupling to gravitons, which
in turn will introduce a correction to the geodesic equation. It
can be obtained from Eqs.~21!, ~22! replacingMmnrs by
mmnrs1Mmnrs and Tmn by Tmn1Tm

mn and keeping terms
linear in m. Here the tensormmnrs is the one given in Eq.
~15! with M replaced bym andxm replaced byzm , andTm

mn

is the energy-momentum tensor for the test particle, given in
Eq. ~12!, with the same replacement. This contribution is

DSm5E d4xA2gF2
1

32p2
mmnrsln~2h !M rsmn

2
1

32p2
mmnrsln~2h !S Prsmn1

1

6
Rdr~mdsn)D

1
a~l!

2
Rmnln~2h !Tm

mn1
b~l!

2
Rgmnln~2h !Tm

mnG .

~32!

The first two terms correspond to thel50 gauge fixing, and
the last two are extra terms appearing for any other gauge.

The geodesic equation for the test particle can be obtained
by taking the functional derivative of the effective action
with respect to the coordinates of the particle

05
1

m

dSeff

dzr
52Fd2zr

dt2
1Gms

r
dzm

dt

dzs

dt G1
1

m

dDSm

dzr
,

~33!

where Gms
r is the Christoffel symbol and

dt252gmndzmdzn. In the weak, nonrelativistic Newtonian
limit, the quantum corrected geodesic equation reads

d2zW

dt2
2

1

2
¹W h005

1

m

dDSm

dzW
. ~34!

Note thath00, given in Eq.~31!, depends ona(l) andb(l).
Now we proceed to evaluate the RHS of this equation. To

that end we first calculate the different terms inDSm . Using
the expression forMmnrs corresponding to the static source,
the first term of Eq.~32! reads

DSm,M~l50![2
1

32p2E d4yA2gmmnrsln~2h !M rsmn

52
1

32p2

mMk2

64 E d4yA2gln~2h !d3~yW !

3E dtd4
„y2z~t!…

3@2ż0ż012g00ż0ż014ż0ż0ż0ż0#

'2
mMk4

512p2E dt ln~2h !d3
„z~t!…. ~35!

Here we have used the fact that, in the nonrelativistic limit,
ż0'21. As DSm is proportional to\, we have also set the
metric gmn in this equation equal to the classical one
hmn—any other correction would contribute with terms
O(\2). In a similar fashion

DSm,R~l50!

[2
1

192p2E d4yA2gmmnrsln~2h !Rdr~mdsn)

52
mk2

1536p2E dt ln~2h !R„z~t!…. ~36!

The other terms appearing in Eq.~32! are

DSm,P~l50![2
1

32p2E d4yA2gmmnrsln~2h !Prsmn

52
mk2

256p2E dt@gmnżrżs12żmżnżrżs#

3 ln~2h !Prsmn , ~37!

DSm,a~l![
a~l!

2 E d4yA2gRmnln~2h !Tm
mn

5a~l!
m

2 E dt żmżnln~2h !Rmn„z~t!…, ~38!

and

DSm,b~l![
b~l!

2 E d4yA2gRgmnln~2h !Tm
mn

52b~l!
m

2 E dt ln~2h !R„z~t!…. ~39!

In these equations the Ricci scalar in the one for the classical

metric, i.e., R„z(t)…52 1
2 ¹2h(0)

„z(t)…58pGMd3
„zW(t)….

The same holds for the Ricci tensorRmn„z(t)….

7784 56DIEGO A. R. DALVIT AND FRANCISCO D. MAZZITELLI



Now we take the variation with respect tozW. We obtain

d

dzW
DSm,M~l50!5

mMG2

p
¹W S 1

r 3D ,

d

dzW
DSm,R~l50!5

mMG2

12p
¹W S 1

r 3D ,

d

dzW
DSm,P~l50!52

mMG2

2p
¹W S 1

r 3D ,

d

dzW
DSm,a~l!52a~l!mMG¹W S 1

r 3D ,

d

dzW
DSm,b~l!52b~l!mMG¹W S 1

r 3D , ~40!

wherer 5uzWu. Therefore

d2zW

dt2
2

1

2
¹W h005

1

m

dDSm

dzW
5F 7G

12p
2a~l!12b~l!G¹W S GM

r 3 D .

~41!

Inserting Eq. ~31! into this expression we see that those
gauge-fixing-dependent terms arising from the backreaction
metric cancel exactly those coming from the coupling of the
test particle to gravitons. Note that the terms witha(l) and
b(l) cancel separately.

One can perform the same calculation as before for any
gauge not belonging to thel family in a straightforward
manner. As it was already mentioned, the difference between
the EA for thel50 gauge and that for any other gauge must
be proportional to the extremalEmn, which vanishes on shell.
Keeping up to quadratic order in curvature, this requirement
fixes the most general form such a difference can have~we
concentrate on the nonanalytic log terms!

DSugiven gauge2DS~l50!

5E d4xA2g@aRmnln~2h !Emn

1bRgmnln~2h !Emn1O„~Emn!2
…#, ~42!

wherea andb are constants that depend on which particular
gauge one uses. For example, for thel family,
a5a(l)525lk2/48p2 and b5b(l)55lk2/96p2, as we
have already seen. In view of the above calculations, we
conclude that the cancelation of thea- and b-dependent
terms takes place for any possible gauge fixing. In this way
we obtain a physical, gauge-fixing independent Newtonian
potentialV(r ) which we read fromd2zW/dt252¹W V, namely,

V~r !52
GM

r F11
43G\

30pr 2c3
2

5G\

12pr 2c3
1

7G\

12pr 2c3G ,

~43!

where we have restored units (\ andc). A comparison be-
tween Eq.~31! and Eq.~43! shows that the coupling of the
test particle with the gravitons produces an additional contri-
bution to the Newtonian potential@the last term in Eq.~43!#
and makes it gauge-fixing independent. Note that the long
distance quantum correction above is extremely small to be
measured. However, the specific number is less important
than the conceptual fact that the potential and motion of the
test particle are gauge-fixing independent.

VI. CONCLUSIONS

We hope to have convinced the reader that if she/he is
interested in solving the backreaction problem including the
graviton contribution, it is not enough to solve the semiclas-
sical Einstein equations because they are gauge-fixing depen-
dent and not physical. Rather she/he has to look for physical
observables. As an illustration of this point we have chosen
the trajectory of a test particle and we have explicitly shown
that, in the Newtonian limit, the usual effective action gives
a gauge-fixing independent result.

We would like to mention several lines for future re-
search. On the one hand, it is of interest to check whether the
Newtonian effective potential derived in this paper does not
depend on reparametrizations of the variables chosen to per-
form the perturbative expansion. When working within the
Vilkovisky-DeWitt approach, the potential should not de-
pend on the supermetric defined on the space of fields. On
the other hand, it would be interesting to find the quantum
corrected geodesic equation in a cosmological setting~desir-
ably, beyond the Newtonian approximation!. Finally, we
would like to point out that similar ideas to the one proposed
here can be applied to the analysis of the mean value equa-
tions of any gauge theory, for example, when computing
gluon backreaction effects on classical solutions to Yang
Mills theories.
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APPENDIX A: DIVERGENCES FOR MINIMAL GAUGES

In this appendix we calculate the divergence of the one-
loop EA for the DeWitt gaugel50. We follow closely the
methods thoroughly explained in@13#. For DeWitt’s gauge,
the second-order differential operatorF(¹) is

Fab,mn~¹ul50!5A2gCab,ls$hd~l
m ds)

n 1Pls
mn1Mls

mn%,
~A1!

and the one loop EA has the following expression:

Seff5Sclass1
i

2
TrlnFab,mn~¹!2 iTrln~hdn

m1Rn
m!,

~A2!
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the first term being the classical action. In the gauge under
consideration, both the differential operator for the gravitons
and the one for the ghosts have a minimal form, which in
matrix notation reads

F̂~¹!5h1Q̂2
1

6
R1̂. ~A3!

Indeed, for the gravitons the matrixQ̂ is given by

Q̂5 P̂1M̂1 1
6 R1̂, while for the ghostsQ̂5R̂1 1

6 R1̂. In or-
der to calculate the functional traces, we make use of the
Schwinger-DeWitt~SDW! technique, to get

TrlnF̂5
i

~4p!
d
2
E

0

` ds

s
d
2 11

E ddx Tr(
n50

`

~ is!nân~x!,

~A4!

where theân(x)’s are the coincidence limit of the SDW
coefficients. The divergent part of the EA for any minimal
operator ind54 dimensions is determined by the first three
SDW coefficients. The divergences coming fromâ0 and â1
can be absorbed into a redefinition of the cosmological con-
stant and the Newton constant. In what follows it will be
relevant the divergence coming from the second SDW coef-
ficient. It reads

â2~x!5
1

180
~RmnabRmnab2RmnRmn1hR!1̂1

1

2
Q̂2

1
1

12
R̂mnR̂mn1

1

6
hQ̂, ~A5!

where R̂mn is the commutator of covariant derivatives. In-
serting the definition of the operatorsQ̂ for the graviton and
the ghost parts into the formula for the second SDW coeffi-
cient, one can extract the divergence coming from pure grav-
ity and the corresponding one due to the massive terms. The
former one gives the well-known result@14#

DSG
div~l50!5

2

~42d!96p2E d4xA2gF53

15
~RmnrsRmnrs

24RmnRmn1R2!1
21

10
RmnRmn1

1

20
R2G ,

~A6!

where the first term in brackets is the Gauss-Bonnet term, a
topological invariant ind54 spacetime dimensions. The di-
vergence due to the presence ofM is read from its contribu-
tion to the second SDW coefficient, namely,
1
6 hM̂1 1

2 M̂21M̂ ( P̂1 1
6 R1̂). It has the following form:

SM
div~l50!5

2

~42d!64p2E d4xA2gFMmnrsMmnrs

12MmnrsS Prsmn1
1

6
Rdr~mdsn)D G , ~A7!

where we have omitted the boundary term.

APPENDIX B: DIVERGENCES FOR
NONMINIMAL GAUGES

In this appendix we sketch the calculation of the one loop
EA and its divergences for thel family of gauge-fixing
functions. As we have already remarked in the text, when
lÞ0 we have a nonminimal gauge. For these nonminimal
gauges, a reduction method has been developed in@13#
which generalizes the Schwinger-DeWitt expansion. It also
consists in a local expansion in the background fields, and it
has been calculated up to second order in the curvature ten-
sors. The starting point is to note that, since the theory as a
whole is gauge independent on the mass shell, the difference
of the effective action in any gauge from that in a given
minimal gauge is always proportional to the extremal, i.e.,
the left-hand side~LHS! of the classical field equation. With
this idea in mind, that difference can be expressed in terms of
nonminimal Green’s functions for gravitons and ghosts,
which are expanded in terms of the background dimension-
ality.

One special easy case of nonminimal gauge families is
that when the gauge-breaking action differs from the mini-
mal one only by an overall factor. This is indeed the case for
thel family, sincexm(l)5(1/A11l)xm(l50). Following
the methods of@13#, the EA for any member of this family of
gauge-fixing functions is

Seff~l!5Seff~l50!1
i

2
l@TrV1n

m~¹!2TrV2n
m~¹!#

2
i

4
l2Tr@V1n

m~¹!#21O„~Emn!2
…, ~B1!

where the extermalEmn is given by

Emn5
d~SG1SM !

dgmn
52

2

k2S Rmn2
1

2
RgmnD1

1

2
Tmn,

~B2!

andV1n
m (¹) andV2n

m (¹) are tensors that are linear and qua-
dratic in the extremal, respectively. Their action on a test
function zn is given by

V1n
m~¹!zn52k2 Qa

m ¹b Grs
~a ~¹! Erb) Qn

s zn,

V2n
m~¹!zn52k2gmv Qv

g E~ar Grg
b) ~¹!

3Gab,wu~¹! Gds
~w ~¹! Eu)d Qn

s zn. ~B3!

In these expressions, Grs
n (¹)5dr

n¹r22ds
n ¹r , and

Gab,wu(¹) andQm
s are the Green’s functions for the gauge

field and ghost field, respectively, evaluated for the DeWitt
gauge

Fgs,ab~¹ul50! Gab,wu~¹!52dwu
gs ,

~hda
m1Ra

m!Qm
s5da

s . ~B4!
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We are interested just in the contribution to the EA that is
linear in the extremal~see main text!. Therefore we concen-
trate ourselves on TrV1n

m (¹), which is given by

TrV1n
m~¹!52k2E d4x@R

•gbs
a Egb2Ebgds

a¹b¹g#

3~hda
s1Ra

s!22d~x,y!uy5x . ~B5!

In order to calculate the divergent part of this expression we
use the methods explained in@13#. It is worth recalling that
we are working up to quadratic order in curvatures, so that
for the contribution of the first term in brackets we can ap-
proximate (hda

s1Ra
s)22 by h22da

s . The two divergences
that appear are

h22da
sd~x,y!uy5x

div 5
i

8p2

1

42d
A2g, ~B6!

¹b¹g~hda
s1Ra

s!22d~x,y!uy5x
div

5
i

8p2

1

42d
A2gF1

6S Rbg2
1

2
gbgRD da

s

1
1

2
R

• abg
s 2

1

2
gbgRa

sG . ~B7!

Finally the total divergence reads

TrV1n
m~¹!udiv5

2i

42d

k2

24p2E d4xA2g

3F25RmnEmn1
5

2
RgmnEmnG . ~B8!
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